
www.anl.gov

Argonne Leadership Computing Facility

P3HPC FORUM, SEPT 1 - 2

DEVELOPING APPLICATIONS FOR
AURORA

SCOTT PARKER

2

Aurora: A High-level View
q Intel-Cray machine arriving at Argonne in 2021:

q Sustained Performance > 1 Exaflops
q Greater than 10 PB of total memory

q Node has Intel Xeon processors and Intel Xe GPUs:
q 2 Xeons (Sapphire Rapids)
q 6 GPUs (Ponte Vecchio [PVC])
q Unified Memory Architecture across CPUs and GPUs

q Cray Slingshot fabric and Shasta platform:
q 8 endpoints per node

q Novel high-performance filesystem:
q Distributed Asynchronous Object Store (DAOS)

q ≥ 230 PB of storage capacity
q Bandwidth of > 25 TB/s

q Lustre
q 150 PB of storage capacity
q Bandwidth of ~1TB/s

3

Three Pillars: Simulation, Data, and Learning
Simulation Data Learning

Directives

Parallel Runtimes

Solver Libraries

HPC Languages

Big Data Stack

Statistical Libraries

Productivity Languages

Databases

DL Frameworks

Linear Algebra Libraries

Statistical Libraries

Productivity Languages

Math Libraries, C++ Standard Library, libc

I/O, Messaging

Scheduler

Linux Kernel, POSIX

Compilers, Performance Tools, Debuggers

Containers, Visualization

4

Aurora Applications Overview

§ Early applications for Aurora come from two programs:
§ The Argonne Early Science Program (ESP) : 20 projects
§ The DOE Exascale Computing Project (ECP) : 15 projects

§ Some projects contain multiple codes
§ overall at least 50 codes are under development for Aurora

§ Almost all projects involve teams from outside Argonne

5

Aurora ECP and ESP Projects and Applications
Project Type Applications

Candle ESP, ECP Candle/Uno

Many Body ESP BerkelyGW, FHI-aims, Quantum Expresso

LHC-ATLAS ESP FastCaloSim, MadGraph

DL Fusion ESP FusionDL

ExaSky, Extreme Scale Cosmo ECP, ESP HACC, NYX,

Connectomics ESP Flood Fill Network, AlignTK, mb_aligner

LatticeQCD ESP, ECP MILC, QUDA, Grid, Chroma

NAMD ESP NAMD

QMCPACK ESP, ECP QMCPACK

ExaFEL ECP Psana, CCTBX, MTIP, nanoBragg

EQSim ECP SW4, ESSI

ExaSMR ECP NekRS, OpenMC

6

Aurora ECP and ESP Projects and Applications
Project Type Applications

GAMESS ECP GAMESS

NWCHEMEX, Catalysis ECP, ESP NWChemEx

ExaStar ECP Castro, Flash

E3SM ESP ES3M-MMF

NQQMC_RMD ESP QXMD, RMD

PHASTA ESP PHASTA

Multiphysics ESP HARVEY

MFXI-EXA ECP MFIX-Exa

EXAALT ECP LAMMPS, LATTE

WDMApp, XGC ESP ECP, ESP XGC, GENE, GEM

Uintah ESP ESP Uintah

ExaWind ECP Nalu-Wind, AMR-Wind

7

Languages Used By Aurora Applications

Language Application
Count

C++ 35

Fortran 23

C 12

Python 12

• Aurora will the provide Fortran, C, C++, and Python language
• The set of applications being prepared for Aurora are using all of these languages
• Some applications use more than one language
• C++ is the most used language, followed by Fortran
• Usage of Python is growing particularly for data and learning applications

8

Choosing an Aurora Programming Model

OpenMP w/o target

OpenMP with target

OpenACC

OpenCL

CUDA

OpenMP

DPC++/ SYCL

OpenCL

Kokkos Kokkos

Raja Raja

Aurora Models

Vendor Supported
Programming Models

ECP Provided
Programming Models

HIP

9

Programming Model Adoption By Aurora Applications

Programming
Model

Application
Count

OpenMP 19

DPC++/SYCL 18

Kokkos 6

RAJA 1

OpenCL 1

OCCA 1

• All of the Aurora programming models are being used by applications
• Some applications are using or exploring more than one programming model
• OpenMP the most commonly used model, followed by DPC++/SYLC and Kokkos

10

OpenMP 5

qOpenMP 5 constructs will provide directives based programming model for Intel GPUs
qAvailable for C, C++, and Fortran
qA portable model expected to be supported on a variety of platforms (Aurora, Frontier, Perlmutter, …)
qOptimized for Aurora
qFor Aurora, OpenACC codes could be converted into OpenMP

https://www.openmp.org/

11

Multiple compilers will support a common set of OpenMP directives on GPUs

LLVM/Clang 10 AMD (mostly
tracks LLVM) Cray (CCE 10) IBM (XL V16.1.6) Intel (Approximately 2021

timeframe)
NVIDIA/PGI (Early 2021
for a production release)

Levels of parallelism 2 (teams, parallel)
(11: 3 (teams, parallel, simd)) 2 (teams, parallel) 2 (teams,

parallel or simd) 2 (teams, parallel) 3 (teams, parallel, simd) 2 (teams, parallel)

OpenMP directive
target ✓ ✓ ✓ ✓ ✓ ✓

declare target ✓ ✓ ✓ ✓ ✓ ✓

map ✓ ✓ ✓ ✓ ✓ ✓

target data ✓ ✓ ✓ ✓ ✓ ✓

target enter/exit data ✓ ✓ ✓ ✓ ✓ ✓

target update ✓ ✓ ✓ ✓ ✓ ✓

teams ✓ ✓ ✓ ✓ ✓ ✓

distribute ✓ ✓ ✓ ✓ ✓ ✓

parallel ✓ ✓ ✓ (may be inactive) ✓ ✓ ✓

for/do ✓ ✓ ✓ ✓ ✓ ✓

reduction ✓ ✓ ✓ ✓ ✓ ✓

simd simdlen(1)
(11: honored with hint) ✓ (on host) ✓ ✓ (accepted and ignored) ✓ ✓ simdlen(1)

atomic ✓ ✓ ✓ ✓ ✓ ✓

critical ✓ ✓ ✓ ✓ ✓ ✘

sections ✓ ✓ ✓ ✓ ✓ ✘

master ✓ ✓ ✓ ✓ ✓ ✓

single ✓ ✓ ✓ ✓ ✓ ✓

barrier ✓ ✓ ✓ ✓ ✓ ✓

declare variant ✓ ✓
(support planned
for CCE 11) ✘ ✓ ✓

12

DPC++ (Data Parallel C++) and SYCL
qSYCL

q Khronos standard specification
q SYCL is a C++ based abstraction layer (standard C++11)
q Builds on OpenCL concepts (but single-source)
q SYCL is designed to be as close to standard C++ as

possible
qCurrent Implementations of SYCL:

q ComputeCPP™ (www.codeplay.com)
q Intel SYCL (github.com/intel/llvm)
q triSYCL (github.com/triSYCL/triSYCL)
q hipSYCL (github.com/illuhad/hipSYCL)

q Runs on today’s CPUs and nVidia, AMD, Intel GPUs

SYCL 1.2.1 or later

C++11 or
later

13

DPC++ (Data Parallel C++) and SYCL
qSYCL

q Khronos standard specification
q SYCL is a C++ based abstraction layer (standard C++11)
q Builds on OpenCL concepts (but single-source)
q SYCL is designed to be as close to standard C++ as

possible
qCurrent Implementations of SYCL:

q ComputeCPP™ (www.codeplay.com)
q Intel SYCL (github.com/intel/llvm)
q triSYCL (github.com/triSYCL/triSYCL)
q hipSYCL (github.com/illuhad/hipSYCL)

q Runs on today’s CPUs and nVidia, AMD, Intel GPUs
qDPC++

q Part of Intel oneAPI specification
q Intel extension of SYCL to support new innovative features
q Incorporates SYCL 1.2.1 specification and Unified Shared

Memory
q Adds language or runtime extensions as needed to meet user

needs

Intel DPC++

SYCL 1.2.1 or later

C++11 or
later

Extensions Description
Unified Shared
Memory (USM)

defines pointer-based memory accesses
and management interfaces.

In-order queues

defines simple in-order semantics for
queues, to simplify common coding
patterns.

Reduction
provides reduction abstraction to the ND-
range form of parallel_for.

Optional lambda
name

removes requirement to manually name
lambdas that define kernels.

Subgroups
defines a grouping of work-items within a
work-group.

Data flow pipes
enables efficient First-In, First-Out (FIFO)
communication (FPGA-only)

https://spec.oneapi.com/oneAPI/Elements/dpcpp/dpcpp_root.html#extensions-table

https://spec.oneapi.com/oneAPI/Elements/dpcpp/dpcpp_root.html

14

OpenCL
qOpen standard for heterogeneous device programming (CPU, GPU, FPGA)

q Utilized for GPU programming
qStandardized by multi-vendor Khronos Group, V 1.0 released in 2009

q AMD, Intel, nVidia, …
q Many implementations from different vendors

qIntel implementation for GPU is Open Source (https://github.com/intel/compute-runtime)
qSIMT programming model

q Distributes work by abstracting loops and assigning work to threads
q Not using pragmas / directives for specifying parallelism
q Similar model to CUDA

qConsists of a C compliant library with kernel language
q Kernel language extends C
q Has extensions that may be vendor specific

qProgramming aspects:
q Requires host and device code be in different files
q Typically uses JIT compilation

qExample: https://github.com/alcf-perfengr/alcl

https://github.com/intel/compute-runtime

15

RAJA
qRAJA is a collection of C++ software abstractions that enable architecture portability for HPC

applications.
qThe goals of RAJA are to:

q Make existing applications portable with minimal disruption
q Provide a model for new applications so that they are portable from inception

qRAJA targets portable, parallel loop execution by providing building blocks that extend the
generally accepted parallel for idiom

qRAJA is being implemented for Aurora by ECP and Argonne
q The SW4 application and much of the RAJA Perf Suite are working
q Initial performance looks promising
q Work remains to support all RAJA features and resolve performance issues

16

Kokkos
q Kokkos is a C++ programming model for developing performance portable applications
q Provides abstractions for both the parallel execution of code and for data management
q Kokkos on Aurora will be implemented using both OpenMP and DPC++ backends

q OpenMP backend –
q Passing Kokkos unit tests
q Some application partially or fully working

q DPC++ backend
q Implementation underway
q Currently waiting on resolution of some compiler issues

17

HIP For Aurora
q Exascale Computing Project (ECP) recently funded an effort to begin implementing HIP for

Aurora
q Being done in collaboration with AMD
q Effort will leverage the fact that both HIP and Intel GPU compilers utilize the LLVM

framework
q HIP will be implemented on top of Intel’s Level Zero runtime layer
q Work is in its initial phases and the extent to which it will be a viable options for applications

in the near term had not yet been determined

18

Preparing CUDA Codes For Aurora

q Portability is an issue for codes utilizing CUDA
q CUDA is a proprietary model for programming nVidia GPUs
q HIP has been developed by AMD to allow easy porting of CUDA codes to AMD GPUs

q HIP code may also be run on nVidia GPUs
q Initial work has started on a HIP implementation for Intel GPUs

q At present the long-term portability of CUDA is unclear

q Intel DPC++ Compatibility tool
q Helps with the migration of CUDA code to DPC++
q Currently in beta
q Tool may not fully convert CUDA code to DPC++ and may require additional developer effort

19

Programming Model Performance

q A common concern is the relative performance of programming models on a given
architecture and their efficiency across architectures

q Implementations of most programming models are still too immature to assess their long-
term performance potential

q Early results suggest the Aurora programming models are capable of delivering roughly
similar performance with some effort

q This suggest that programming model choice should not be made primarily on performance
concerns

20

A Comparison of CUDA and SYCL using the RAJA Performance Suite

§ The RAJA performance suite is a collection of
performance benchmarks with RAJA and non-
RAJA variants

§ CUDA variants were ported to SYCL and
performance compared on a V100 GPU using
hipSYCL

§ Figure shows the speedup of SYCL variant relative
to the CUDA variant

§ SYCL is showing competitive performance to
CUDA on NVIDIA devices

From “Evaluating the Performance of the hipSYCL Toolchain for HPC Kernels on NVIDIA V100 GPUS” at SYCLCON 2020 by Brian Hommerding

CUDA
Faster

SYCL
Faster

21

Intel Libraries
qThe use of libraries and frameworks can simplify performance portability

qOneAPI MKL (oneMKL)
q Highly tuned algorithms optimized for every Intel platform
q FFT
q Linear algebra (BLAS, LAPACK)

q Sparse solvers
q Statistical functions
q Vector math
q Random number generators

qOneAPI Deep Neural Network Library (oneDNN)
q High Performance Primitives to accelerate deep learning frameworks
q Powers Tensorflow, PyTorch, MXNet, Intel Caffe, and more
q Running on Intel Gen9 GPUs today

qoneAPI Data Analytics Library (oneDAL)
q Classical Machine Learning Algorithms
q Easy to use one line daal4py Python interfaces
q Powers Scikit-Learn

22

Intel VTune and Advisor
q Vtune Profiler

q Widely used performance analysis tool
q Currently supports analysis on Intel integrated GPUs
q Will support future Intel GPUs

q Advisor
q Provides roofline analysis
q Offload analysis will identify components for

profitable offload
q Measure performance and behavior of original code
q Model specific accelerator performance to determine

offload opportunities
q Considers overhead from data transfer and kernel launch

23

Aurora Testbeds

qIntel DevCloud
q Provides free access to GPU hardware and oneAPI

software
q https://devcloud.intel.com/oneapi/get-started/

qLocal Setup
q Download Intel oneAPI public beta

q https://software.intel.com/content/www/us/en/develop/tools/
oneapi.html

q Run on Intel CPU with integrated graphics
qArgonne JLSE testbeds for Aurora

q 20 Nodes of Intel Xeons with Gen9 Iris Pro integrated
GPU

q DG1 nodes
q Intel’s Aurora oneAPI SDK [NDA required]

Argonne Joint Laboratory for System Evaluation

https://devcloud.intel.com/oneapi/get-started/
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html

Questions?

